注册 登录
美国中文网首页 博客首页 美食专栏

心理与性-邓明昱博士 //www.sinovision.net/?83465 [收藏] [复制] [分享] [RSS] Medical Psychology and Human Sexuality

x

博客栏目停服公告

因网站改版更新,从9月1日零时起美国中文网将不再保留博客栏目,请各位博主自行做好备份,由此带来的不便我们深感歉意,同时欢迎 广大网友入驻新平台!

美国中文网

2024.8.8

分享到微信朋友圈 ×
打开微信,点击底部的“发现”,
使用“扫一扫”即可将网页分享至朋友圈。

机器学习预测模型用于指导大学生焦虑障碍和抑郁障碍的预防和干预分配 ...

已有 52 次阅读2025-2-10 20:46 |个人分类:心理学、心理健康、心理咨询|系统分类:科技教育分享到微信

机器学习预测模型用于指导大学生焦虑障碍和抑郁障碍的预防和干预分配
Machine learning predictive models to guide prevention and intervention allocation for anxiety and depressive disorders among college students

——《咨商与发展杂志》第103卷第1期,2025年——
<Journal of Counseling & Development> Volume 103, Issue 1, 2025

      【摘要】大学生心理健康一直是专业心理咨询师关注的重点。在过去十年中,焦虑障碍和抑郁障碍变得越来越普遍。利用机器学习(人工智能 (AI) 的一个子集),我们开发了预测模型(即极端梯度提升 [XGBoost]、随机森林、决策树和逻辑回归),以识别可诊断为焦虑障碍和抑郁障碍风险较高的美国大学生。该数据集包括来自133所美国高等教育机构的61,619名学生,并按90:10的比例划分以训练和测试模型。我们采用超参数调整和交叉验证来优化模型性能,并检查了预测性能的多种指标(例如,受试者工作特征曲线下面积 [AUC]、准确度、灵敏度)。结果显示,我们的机器学习预测模型具有很强的判别能力,AUC分别为0.74和0.77,表明当前的财务状况、校园归属感、残疾状况和年龄是焦虑障碍和抑郁障碍的主要预测因素。这项研究为专业心理咨询师提供了一个实用的工具,可以在这些情况恶化之前主动识别患有焦虑障碍和抑郁障碍的学生。机器学习在心理咨询研究中的应用提供了数据驱动的见解,有助于增强对心理健康决定因素的理解,指导预防和干预策略,并通过心理咨询促进不同学生群体的福祉。
      【关键词】焦虑、抑郁、机器学习、预测模型、预防和早期干预

      [Abstract] College student mental health has been a critical concern for professional counselors. Anxiety and depressive disorders have become increasingly prevalent over the past decade. Utilizing machine learning, a subset of artificial intelligence (AI), we developed predictive models (i.e., eXtreme Gradient Boosting [XGBoost], Random Forest, Decision Tree, and Logistic Regression) to identify US college students at heightened risk of diagnosable anxiety and depressive disorders. The dataset included 61,619 students from 133 US higher education institutions and was partitioned into a 90:10 ratio for training and testing the models. We employed hyperparameter tuning and cross-validation to optimize model performance and examined multiple measures of predictive performance (e.g., area under the receiver operating characteristic curve [AUC], accuracy, sensitivity). Results revealed strong discriminative power in our machine learning predictive models with AUC of 0.74 and 0.77, indicating current financial situation, sense of belonging on campus, disability status, and age as the top predictors of anxiety and depressive disorders. This study provides a practical tool for professional counselors to proactively identify students for anxiety and depressive disorders before these conditions escalate. Application of machine learning in counseling research provides data-driven insights that help enhance the understanding of mental health determinants, guide prevention and intervention strategies, and promote the well-being of diverse student populations through counseling.
      [Key words] anxiety, depression, machine learning, predictive model, prevention and early intervention

      论文原文:Yusen Zhai, Yixin Zhang, Zhicong Chu, Baocheng Geng, Mahmood Almaawali, Russell Fulmer, Yung-Wei Dennis Lin, Zhaopu Xu, Aubrey D. Daniels, Yanhong Liu, Qu Chen, Xue Du (2025). Machine learning predictive models to guide prevention and intervention allocation for anxiety and depressive disorders among college students. Journal of Counseling & Development. Volume 103, Issue 1, Pages 110-125. January 2025.
https://doi.org/10.1002/jcad.12543 

(需要英文原文的朋友,请联系微信:millerdeng95 或 iacmsp)




免责声明:本文中使用的图片均由博主自行发布,与本网无关,如有侵权,请联系博主进行删除。







鲜花

握手

雷人

路过

鸡蛋

评论 (0 个评论)

facelist

您需要登录后才可以评论 登录 | 注册

 留言请遵守道德与有关法律,请勿发表与本文章无关的内容(包括告状信、上访信、广告等)。
 所有留言均为网友自行发布,仅代表网友个人意见,不代表本网观点。

关于我们| 反馈意见 | 联系我们| 招聘信息| 返回手机版| 美国中文网

©2025  美国中文网 Sinovision,Inc.  All Rights Reserved. TOP

回顶部